Celebrating 40 Years!

Model-Retailer-Magazine-photo-fall-1996

Picture from Model Retailer Magazine with Dennis Babbitt at Mark Twain Hobby Center in the fall of 1997.

Mark Twain Hobby Shop opened it’s doors to the public on December 5th , 1976 in the outside lower level of the Mark Twain Mall in Saint Charles Missouri. Since that time, products have changed, customers have changed but in reality every thing has remained the same. The same great service, the same great pricing, the same great place to find your dreams.

Don Babbitt opened Mark Twain Hobby Shop as a dream to owning a business. As a sales tax auditor for the state he did not feel a desire to spend the rest of his career in that position. An avid model builder for years, Don wished to spend time helping others enjoy that same passion. So the story begins. It took over a year before Don could work full time at the store, utilizing part time help during the day and working in the evenings and weekends with his brother Dennis who went from part time to full time in 1980.

As times and people changed,the store changed and grew, leaving the mall in 1987 to a location at the the corner of Fifth Street and Boonslick Road. Dennis bought out Don’s interest in 1990 and Don started his second, or was it his third career as a college teacher eventually retiring in 2016.

Dennis has continued to build the business with the help of many great employees and managers including Darren Vancour, who started out part time as a college student. Darren has been with the company for nearly 26 years. Others with many years of experience include Kevin Thompson, Bret Babbitt, Bill Holmes, Dan McEntee and too many more to mention. The business would not be here today without the great employees.

Mark Twain Hobby Center moved to a larger building on West Clay Street at Zumbehl in October 1996, expanding again in 2000, 2006 and 2011. Each expansion has help position the business for helping our customers better in the future. With a mail order business that ships worldwide MTH has the ability to serve customers from the United States to nearly every country in the world.

This year we celebrate the 40th anniversary of Mark Twain Hobby Center, thanks to all of our many loyal customers and employees.

Dennis Babbitt


TAMIYA M4A3E8 SHERMAN MODEL Kit Review By Jerry Dean

The Tamiya M4A3E8 Sherman tank model assembles very easily and the parts fit together very well, typical of Tamiya Armor Kits. The lower hull is made up of individual parts, but they go together very well.

The suspension and road wheels are very nicely detailed. I had to do a little extra sanding on half of the road wheels, almost seemed like the mold was slightly offset when produced. It was not very noticeable and was very easily cleaned up. The turret is molded in two separate parts, and after gluing together, it leaves a seam line around the lower rear of the turret that should not be there to be accurate. I carefully sanded this line down and used Mr. Surfacer 500 Primer stippled with a large brush to reproduce the cast look the turret should have.

For painting, I used Tamiya Acrylics sprayed through a Paasche airbrush. I added several thin layers of different shades to get the final look. Weathering was done with Tamiya Weathering Master sets. Washes and filters were completed with oil paints. This was my first attempt at using oil paints, which I think turned out very well.

All parts and supplies used to built this kit can be purchased at Mark Twain Hobby (except for the oil paints at this time).

Overall a very nice kit with excellent detail, very good fit but not overly complicated. I built this kit straight from the box, but it would definitely benefit from some additional details such as photo-etch straps on the tools and a set of individual piece tracks.

I want to thank Kevin Thompson for letting me build this kit, Brett Avants for the tips and advice during the build and John Welther for being a bad influence by getting me back into building armor models.

Jerry Dean


Revell 1929 Ford Rat Rod By Rick Hopkins

Here is a newer kit done up for you guys. this one is a re-release of the old Revells 29 Ford closed cab pickup truck. This re-release has the new style pop-in white walls with steel wheels. The kit also has several options like a roadster style truck cab with or without a canvas roof. The kit still only comes with the flat head four cylinder engine, but you can add supplied chrome racing / street rod parts (as in the old original kits)
I decided to do mine as the closed cab mild rat rod. I painted it in hot rod primer gray with a little rust here and there. I really enjoyed doing this retro model. It reminded me of when I was a kid in the 70’s building it for the first time and lots of fun!
As the old type Revel kits, these are really detailed and sometimes over-detailed! There are many parts that are very thin and hard to work with. If you take your time and look carefully at the directions it does go together and looks great when you’re finished!


Moebius 1969 F100 Review by Wes Salazar

20150821_162943The 69 Ford F-100 has become popular with collectors and customizers alike. Now model builders can have the opportunity to build their own with Mobius’ new 69 Ford kit. Just like the Mobius kits from last year, this one is very well tooled and thought out.

Assembly begins with the frame and front suspension. Be mindful of the different sides to the I-beams and stabilizer bars, as it is easy to put them on the wrong sides. You will have to sand the seam once you put the rear axle together as well. The steel wheels with separate dog dish hubcaps are a nice touch as well. Next is the motor assembly. This kit only comes with the option of a straight 6, but you could easily swap the V-8 from the 71 Ford kit if you’d prefer. The 6 cylinder, however, builds up very nice and is pretty straight forward, with plenty of opportu
nities for detailing. A separate transmission makes paint a breeze for both it and the block, and it fits snuggly onto the frame.20150821_16313520150821_163356

The bed is another nice feature of the kit, as it has all separate pieces. Besides, inner bed tubs, floor, and front and rear portions of the bed make painting a snap and fit it second to none. The step-down bumper is optional, but I did not see a substitution for it if chosen not to be used. There are very little mold lines that will need to be removed from the cab as you go to paint it. There is a separate firewall along with all the other goodies under the hood. When it was fully assembled though the engine bay looked like there was something missing, or just bare. This could be another awesome place for some heavy detail. One problem I ran into while assembling the cab was the fitment of the glass. The rear fit just fine, but the windshield, however, was a royal pain. The sides snap onto the outside of the A-pillars, but the glass is installed from the inside. This makes for a very tight fit (no need for glue), but also a nightmare to get it in. I actually chipped the clear coat on the cowl trying to get it into place. The other problem I ran into was the fitment of the hood once the core support piece was in place. It’s as almost if the support is too tall and makes for a sloppy hood fit.20150821_163236

All in all this was a very nice kit to build. Despite the two issues I had, I think Mobius hit it out of the park with this one. I can’t wait to build a custom version next with my own touches to it. I recommend this kit to moderate to advanced builders who are looking for something to cover a wide range of styles and trends. Mobius has definitely become a player in the model car category, and if this kit is any indication, they plan on staying, and climbing up the rankings among model car kits.


1:25 Galaxie 1947 Chevy Fleetmaster By Rick Hopkins

woody 005woody 001
woody 002

woody 003

woody 004

The new Galaxie 1/25th scale 1947 Chevrolet Fleetmaster Aerosedan Build by Rick Hopkins
I built mine as stock with the supplied separate woody panel for the sides of the car. The kit also comes with two different colors of the wood panel inserts (decals) and lots of other decals to totally customize your ride.   You can also build the model in either a 46′ 47′ or 48 versions. This is really just a different grill or grill add on but cool, none the less!
One hint for the builder though…when starting your build on either this Fleetmaster or the coupe:
Start by gluing the front fender assembly onto the main body first if you go by the instructions, this part will cause you a bit of a headache  during the rest of the build!
The optional chrome sun visor, lowered suspension, and snap-in white walls are a real plus .
This is a real sweet model kit and lots of fun to build with relative ease . The instructions are fairly easy to follow as well. I’ve done five of the Fleetmasters and six of the coupes now and will most likely do many more as my customers request them.
The kit is well thought out and the parts fit is way above average . This all white plastic kit has several ways you can build: stock, custom or drag racer.

FlameWheel F550 Hexcopter Kit from DJI By Ty Crawford

DSC_8901

Photo By Ty Crawford

Hey everyone,
In October 2014 or so we started to carry a growing variety of components to build your own multirotor ‘copters. We’d kept up with the Ready-To-Fly out of the box market, but the DIY market was growing and we hadn’t done anything to meet that area of the hobby. Since then we’ve been eager to take some inventory off the shelf and put our theory to the test.

The Guts: I decided to go big and build the F550hexcopter kit from DJI. It is the largest of the three platforms that we carry product for (the others are 450mm and 250mm). I was also curious as to how six rotors would handle compared to the usual four.

One important quality of picking this frame is what limitations it provides. These are not drawbacks, so to speak, because literally any platform has some form of limitations. In this case, the 550mm span limits us to a 10” propeller. The APC Multirotor propellers are always my first choice. At 10 inches, 4.5 is the only pitch offered, and its very common for multirotors.

DSC_8910

Photo By Ty Crawford

This propeller helps us to narrow down an ideal motor option. The main line of motors we stock at MTH is the Cobra Multirotor Motor line. The engineers at Cobra provide unrivaled data for their motors. The important thing to look out for is outright thrust. Multirotors perform best when they have a maximum thrust-to-weight ratio of between 2:1 and 3:1. Based on rough math, we’d like an all-up weight of up to 2000-2250g. We’ll need upwards of 4500g of total thrust, split among 6 motors means total thrust per motor should be roughly 750g. The obvious candidate became the Cobra CM-2213/36 700Kv. With a 4-cell LiPo and a 10” APC prop, our max available thrust is 831g, which gives us some excess. Furthermore, our amp draw at max throttle is only 8.28 amps. This keeps our cost of ESCs down.

When it comes to the ESCs, one can pretty easily buy the bare minimum and take the risk. I personally prefer to overshoot how much speed controller I need by one step. That is to say, if I only need 8 amps, and the closest is 10 amps, I would actually see if it is cost effective to make the jump to 20 amps. This is bordering on unnecessary, but there is a method to this madness. First of all, the data motor manufacturers give typically doesn’t account for burst current, which varies in nature from continuous current. Second, if I only ever pull 8 total amps from these speed controllers, that means they are running at less than 50% workload, and they’ll usually run cooler, and are at far less of a risk of burning up. Lastly, the cost of the Gaui 10 Amp Multirotor ESC is $10.95, and the 20 Amp is only $14.95. This little security measure becomes the obvious choice.

DSC_8907

Photo By Ty Crawford

Tracing the signal back even further we come to the flight controller. This is the brain of the build. We decided to put the Eagle Tree Vector to the test. I pulled this unit off of my 250mm race quad, for which the Vector was overkill. The Vector is perfect for this build, however, as it offers stabilization, GPS functionality, AND an FPV on-screen-display overlay function. This means that when we hook up the FPV gear and watch in our goggles, we see all the telemetry our data can feed us. Things like battery voltage and remaining life, GPS coordinates, altitude, distance from home, and compass heading all become readily available. Additionally, being able to program the entire unit through an FPV menu as well as sporting a super sweet fighter jet heads-up-display make this board an absolute must for the FPV enthusiast.

Hooked up to the flight controller is our Spektrum AR8000 receiver. This is again something that is pretty excessive. Usually 4 channels is bare minimum, 5 is sufficient, and 6 is more than ideal. I would recommend to anyone building something of this scale to consider the AR610 instead. I just used the AR8000 because I had it laying around. It is bound to my Spektrum DX8 transmitter. This is also just a little excessive. However, I find that I use a good variety of the features that separates this radio from a DX6i or DX7s. Much like an AR610 is more than ideal, a DX6i would be more than capable of running this setup.

Powering this whole build is a Lectron Pro 5200mAh 14.8 volt battery. This series of Lectron Pro batteries have been incredibly popular among our RC truck customers. This battery fits seamlessly within the plates of this frame, as if it were meant to be. We obviously needed a 4 cell battery. Beyond that, our capacity is dictated and limited by how much payload we are comfortable using. This battery ways just around 460g, which is actually considerably lighter than a comparable Hyperion 4S 5200mAh at 572g, which was admittedly my first choice in battery.

DSC_8904

Photo By Ty Crawford

The Build: This was admittedly the first time I’ve built something of this scale, and I couldn’t have asked for a simpler build process. The DJI F550 frame didn’t come with printed instructions, an unfavorable exclusion at first thought. However, it soon become obvious that the parts of the F550 come together quite intuitively. Another nice feature of this frame is that the bottom plate actually doubles as a power distribution board. The Cobra motors came with an excess of wire, which should be cut down to length to reduce weight once everything is tested. They also need 3.5mm bullet connects soldered on to plug into the Gaui 20A ESCs.

The last piece of actual assembly was our PS1 landing gear. This is a complete upgrade over the DJI-branded gear, which are really just four white plastic legs that bolt under the arms. They’re good enough to get you off the ground, but they lack a few options that we wanted on this build. Firstly, we wanted options when it came to mounting the battery. We had mounted everything in such a way that the obvious place for the battery was tucked between the plates in the frame. This is good because it is real easy to keep the battery close to the CG and its a close fit. The problem here is we plan on adding a gimbal and camera. The ideal mounting for the camera would be way out in front so as to minimize the blades in the shot. The farther you stick a weight out from the center of the axes, the farther it pulls the CG forward as well. It needs to be counter-balanced. The PS1 landing gear not only puts the gimbal way out in front but it also puts our batteries on sliding rails, letting us mount whatever, wherever. The disadvantages to this landing gear are two-fold. Firstly, because it has 5 full carbon fiber tubes, some nearly 20” long, the cost is significant. Secondly, it adds another 300 grams to the build, which cuts into our flight time.

The all-inclusive PDF manual for the Vector answers almost any question you could possibly have for it, with loads of pictures as well, making hooking these speed controllers up super easy. All of the cables in the included receiver harness are labeled and hook right up to the receiver. I will admit that the only complication I had in hooking up the Vector for full functionality was in hooking up the camera and video transmitter. The way this is supposed to work is that you hook JST male connectors from the included PSU at either 12V+ or 5V+ to the female JST connectors labeled Camera and Vid Tx to power those items respectively. The problem I had was that my camera demanded 5V+, and I was already using the one 5V+ plug to power my receiver. At such a point where my video transmitter was already being powered by the PSU and it was capable of providing my camera with voltage on its own, I simply made a voltage jumper that bypassed the Vector entirely. That is to say, the video signal goes into the Vector and back out of the Vector, while the camera’s power supply comes from the video transmitter.

DSC_8911

Photo By Ty Crawford

The Flight: Let’s talk about flight. We were very careful taking this build in the air. Its size and power have the potential to do real damage to people and property, so it is very important to exercise caution. We faced some basic setup hurdles along the way. Upon our first few takeoffs, it seemed the hex was pitching towards the rear and to the left. Some things to check here is to make sure you record a level surface for the flight board to recognize as level when it stabilizes. We also made sure our ESCs were all timed correctly. They all came from Gaui in the same shipment, but small inconsistencies in manufacturing lead to big differences in flight. To do this, we plugged all 6 speed controllers into our throttle channel through a number of splitters, and went through our ESC-specific calibration process. Eventually, we had tweaked and tuned the hex enough to where it was ready for actual flight.

The first full flight on the hex was in a park. Our goal was to test the flight time and to test the GPS resolution through using the “Loiter” mode. At this stage we’d not yet installed the landing gear, so we were a bit lighter than our finished build. In the Loiter mode, the hex flew in one spot, give or take about six feet, at one altitude, and hovered for a solid 22 minutes. Yes, that’s 22 minutes of hovering flight. I was absolutely stunned. The stunned-at-first kids actually got bored watching it for that long and left. When it hit about 13.8 volts on the pack, it entered autoland. I was watching the battery, and it really tapered off at the end, so I doubt changing my low voltage cutoff will give me anymore flight. I do, however, wish that the descent was slower, which of course is completely programmable in the Vector’s software.

We now have our benchmark of 22 minutes. We added 300 grams in landing gear, and we will likely add another 200g or so in camera and gimbal. We may even dare to add another 460 grams in battery. The ideal goal is to hit 20 minutes of Loiter hover with camera and gimbal. The alternative goal is to maintain at least 12 minutes of hover time while using the gimbal, camera, and just one battery, and keeping our other battery for a quick spare.

The Science: Let’s take a second here to discuss the point of diminishing returns. This is an idea used in economics but it also applies here. There becomes a point at which the advantage of extra run-time through more battery is literally outweighed by the extra weight of the battery and the added power it takes to lift off and fly. Suppose, for example, that we got 17 minutes of hovering flight, using only one of our two batteries. Then, suppose we decide to add the battery, and because of our extra amp draw and weight, our hover time is only 22 minutes. We doubled the battery but for only five extra minutes of flight. The ideal here is instead to run the two batteries separately, giving us 34 minutes of hovering time combined. We ultimately get to decide the point at which the life of two combined batteries outweighs the life of two separate batteries run back to back.

Adding the weight of the landing gear had a tremendous impact on the overall weight of the hex, and therefore, the amp draw of the motors. When we flew the hex with two batteries at once, fully loaded with aerial photography gear, our amp draw was 24 amps across the board, roughly 4 amps per motor. This is still well within the operating range of our motors and our speed controllers, but we literally doubled our amp draw from our first test. Basic logic tells us that since we doubled our amp draw on the batteries, but also doubled our battery capacity, we should reasonably expect the same run time of 22 minutes as when we did the first test. This exceeds our goal of 20 minutes with two batteries!

For the sake of science, we also ran the F550 with just one battery, mounted towards the rear to balance the GoPro in the front. This reduced our weight by 460 grams, and decreased our hovering amp draw by 4 amps down to 20. Our test flight showed that we actually get 20% more run-time than the calculator at Digi-Key suggests we should ( http://bit.ly/1KDP1W6 ). That same calculator estimated we should expect 11 minutes with one battery, so I’d say its safe to expect just a little more than that. This comes in right at our goal of 12 minutes of hover time.

So which is better? Two batteries simultaneously or two batteries back to back? Let’s consider the two battery scenario. Our weight was 2850 grams, actually over the threshold of what our 2:1 thrust to weight ratio will allow. It will still hover but our maneuverability suffered because of it. The motors were working far too hard just to hover it to do anything else. And this is fine if all we want to do is hover, but it slows down ascent rates and just sacrifices flight quality, in my opinion. Here’s my theory: motor thrust curves on non-linear, meaning the amount of throttle the board sends to the motor is not always proportionate to the power the motor puts out. The graduation is much slower on the low end of these motors, linear in the middle, and then it tapers off at the high end. By staying in the area at the bottom, our flight controllers can more precisely control the output of our motors. The more rapidly the output of the motor changes, the less our flight controllers can predict the response it gets. In other words, the gains we played with in the beginning apply more to the area of the thrust curve that we were in when making those adjustments. All this being said, we prefer to fly this with one battery, and actual tests show that we get as much as 15 minutes of flight.

DSC_8914

Photo By Ty Crawford

The Final Word: We started this build to showcase what we stock as a hobby shop. It has been a learning experience, and a pleasant one at that. The build itself was far more fun than frustrating, as building things should be. One of the reasons we were skeptical to get into this area of the hobby is because of the complications involved with taking all of these products from all of these different manufacturers and throwing them together without instructions. This was absolutely not the case, as we only had two or three very small complications along the way. In retrospect, this idea was very common when building kit planes was all there was. That’s what made this a hobby.

You’ll see our build list and think about how expensive the hexcopter is. But look at it though. For sake of comparison, I want to compare it to the Yuneec Q500 Typhoon, which is significantly cheaper, and make a case for the hexcopter. Firstly, one could build an F550 in the price range of the Q500. Next, one could instead make a quad in the range of the Q500. Having more motors and propellers offers much better thrust efficiency and also offers some redundancy. Both of these multirotors have an FPV system set up. That is to say, all our build needs is a screen or goggles. A small 4” LCD car backup screen for $18 is what I use. Our DX8 transmitter works with our hex just like the ST10 works with the Q500, but my DX8 also flies my 350QX, my two Blade helicopters, and just about any other flying think Horizon puts out (with the exception, of course, of the Q500). Sure, one could buy the Q500 for $1300 ready-to-fly, and call it day. But once that purchase is made, the limitations of that platform are set in stone. There is no upgraded motor option, no chance to upgrade the ESCs, the only improvements to flight are made through firmware updates, and for lack of a better description, you’re stuck with it. And if that makes you happy and you just want to get out and fly, that’s great. And that is the same thing to expect out of most ready-to-fly anything. But for a hobbyist that really wants to expand, and wants the potential to use some of these guts on another model should worst comes to worst, building a multirotor is inevitably in your future.

Lastly, its important to note that we built this hex fully loaded. We went with just about every cool option we could. A lot of this hardware actually came off of quads I had already built and had lying around, but that hardware was all bought here at MTH. I had a DX8 as my main radio, and it came with an AR8000 that I didn’t really need in anything else. The Vector came off my 250mm race quad, for which it was truly excessive. The landing gear was only put on to support my GoPro Hero 3 and its gimbal, both of which came off of my Blade 350 QX. The FPV equipment that we used I had left over from both of my quads. So we got to thinking, just how cheap could someone get one of these in the air, ready-to-fly? We put both of the build lists here for you to see how to get these in the air. Thanks for reading everyone. Have fun out there.

-Ty Crawford11223532_10154175507814251_5184761599216934539_n


Staying Social: Visually

Blade Chroma are in stock now. #bladeheli #drone #quadcopter #bladechroma #bladerc #marktwainhobbycenter

A photo posted by Mark Twain Hobby Center (@marktwainhobby) on Aug 7, 2015 at 8:56am PDT

We’ve made our way on to Instragram.
Follow us @marktwainhobby